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Abstract
It is shown that the transfer matrices of homogeneous s�(2) invariant spin
chains with generic spin, both closed and open, are factorized into the product
of two operators. The latter satisfy the Baxter equation that follows from the
structure of the reducible representations of the s�(2) algebra.
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Mathematics Subject Classification: 37K10

1. Introduction

The recent interest in the analysis of noncompact spin magnets (spin chains with the infinite-
dimensional Hilbert space at each site) is motivated by the advances in gauge field theories
(see for a review [1, 2]). These models (spin magnets) can be solved with the help of the
algebraic Bethe ansatz (ABA) method [3, 4]. Alternatively, the solution is provided by the
method of the Baxter Q-operators [5].

The Baxter Q-operator is known for a large number of integrable models [6–15].
Nevertheless, a universal method for obtaining the Baxter operator is absent so far and each
model (or class of models) needs a special consideration. The derivation of the Baxter Q-
operator for the s�(2) spin chain models is based on the Pasquier–Gaudin trick, see [6, 9, 16].
The generalization of the latter to the spin chains with the higher rank symmetry groups is not
quite obvious.

In the present paper, we give the alternative derivation of the Baxter equation for the
noncompact XXX spin chain models. We shall show that the transfer matrices for the
homogeneous spin chain models factorize into a product of two operators. The factorization
holds for all closed s�(2) spin chains studied so far [14, 16, 17] and can be traced to the
factorization of the R-operator obtained in [18]. We prove that this property is true for
the open spin chain models as well. As the factorization property is established, the Baxter
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equation for these operators can be deduced in a simple way from the structure of the reducible
representations of the s�(2) algebra. (See [19] where similar arguments were applied to the
analysis of q-deformed spin chain models.) We shall consider the spin chains with the quantum
space being the generic lowest weight representation of the s�(2) algebra, but the method works
for the principal series representations of the SL(2, R) (SL(2, C)) group as well. Taking into
account that, as was shown in [18], factorization holds for the s�(3) and s�(2|1) invariant
R-operators one can hope that the approach presented here admits a generalization for the
spin chains with the symmetry group of higher rank.

The paper is organized as follows. In section 2, we introduce notations and describe the
model. In section 3, we prove the factorization property for the transfer matrices for both
the closed and open s�(2) noncompact spin chain models. In section 4, the derivation of the
Baxter equation based on the structure of the reducible s�(2) representations is given. Section 5
contains concluding remarks.

2. Preliminaries

The basic object in the theory of the lattice integrable systems is a R-operator. The R-operator
is a linear operator which depends on a spectral parameter u and acts on the tensor product of
two s�(2) modules (representations of the s�(2) algebra). It satisfies the Yang–Baxter relation
(YBR)

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u). (2.1)

The operators act on the tensor product V1 ⊗ V2 ⊗ V3, and, as usual, indices ik indicate that
the operator Rik acts nontrivially on the tensor product Vi ⊗ Vk . We shall consider the s�(2)

invariant solutions of the YBR.
The s�(2) algebra has three generators, S+, S− and S0, which satisfy the well-known

commutation relations

[S0, S±] = ±S±, [S+, S−] = 2S0. (2.2)

The lowest weight representation of s�(2) algebra, Ds , is uniquely determined by the complex
number (spin) s. The generators can be realized as the differential operators

S− = −∂z, S+ = z2∂z + 2sz, S0 = s∂z + s (2.3)

acting on the linear space Vs = C[z] (the space of polynomials of arbitrary degree of a
complex variable z). For a given s, the representation (2.3) is irreducible unless s is a
negative (half)integer. If s = −n, n = 0, 1/2, 1, . . . , the space Vs contains a finite-
dimensional invariant subspace, Vn, the space of polynomials of degree less than or equal to 2n

(dim Vn = 2n+1). The representation induced on the factor space V−n/Vn is equivalent to the
representation Ds ′ with spin s ′ = 1 + n. The operator A which intertwines the representations
D−n and Dn+1, (AD−n = D1+nA), is defined by the commutation relations

AS(s=−n)
α = S(s=n+1)

α A

and has the form A = ∂2n+1
z .

For the real s > 1/2 there exists the invariant scalar product (·, ·)s on the space Vs ,

(ψ1, ψ2)s =
∫

Dszψ1(z)ψ2(z), (2.4)

where ∫
Dszϕ(z, z̄) ≡ 2s − 1

π

∫
|z|<1

d2z(1 − |z|2)2s−2ϕ(z, z̄). (2.5)
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The operator S0 is Hermitian with respect to the scalar product (2.4), while S
†
− = −S+.

For complex s the integral (2.4) defines the invariant bilinear form on the tensor product
Vs∗ ⊗ Vs . The unit operator (reproducing kernel) has the form

Ks(z, w) = (1 − zw̄)−2s . (2.6)

The identity

ψ(z) =
∫

DswKs(z, w)ψ(w), (2.7)

where ψ(w) is the function analytic in the unit circle holds for complex s such that Re s > 1/2;
for all other spins it should be understood as an analytic continuation in s.

The s�(2) invariant R-operator acting on the tensor product of two spaces Vs1 ⊗ Vs2 has
the form [20, 4, 21]

R12(u) = (−1)J−s1−s2
�(s1 + s2 + iu)

�(s1 + s2 − iu)

�(J − iu)

�(J + iu)
, (2.8)

where the operator of the conformal spin J is related to the two-particle Casimir operator in
the standard manner

J(J − 1) = (�S1 + �S2)
2. (2.9)

It was shown in [18] that the R-operator (2.8) can be represented in the factorized form

R12(u) = P12R+
12(α)R−

12(β) = P12R−
12(β)R+

12(α). (2.10)

Here, P12 is the permutation operator P12ψ(z1, z2) = ψ(z2, z1), and

α = s2 − s1 + iu

2
, β = s1 − s2 + iu

2
. (2.11)

The operator R−
12(α) is a s�(2) covariant operator, i.e. it maps

Vs1 ⊗ Vs2 → Vs1−α ⊗ Vs2+α

and has the following form:

R−
12(α) = �(2s1)

�(2s1 − 2α)

�(z12∂1 + 2s1 − 2α)

�(z12∂1 + 2s1)
, (2.12)

where z12 = z1 − z2. Such normalization implies that R−
12(0) = I and R−

12(α) · 1 = 1. The
second operator R+

12(α)
(
R+

12(α) : Vs1 ⊗ Vs2 → Vs1+α ⊗ Vs2−α

)
is

R+
12(α) = R−

21(α) = �(2s2)

�(2s2 − 2α)

�(z21∂2 + 2s2 − 2α)

�(z21∂2 + 2s2)
. (2.13)

The operators R±
12(α) depend on three parameters—the spins s1, s2 and the spectral parameter

α. The spins are always fixed by the tensor properties of the space Vs1 ⊗ Vs2 the operators act
on; therefore, we shall display the dependence of the operators on the spectral parameter only.
The action of the R-operator (2.10) on the space Vs1 ⊗ Vs2 results in the following chain of
transformations:

Vs1 ⊗ Vs2

R−
12(β)−→ V(s1+s2−iu)/2 ⊗ V(s1+s2+iu)/2

R+
12(α)−→ Vs2 ⊗ Vs1

P12−→Vs1 ⊗ Vs2 .

In the next section, we shall represent the operators R±
12(α) as integral operators and prove the

factorization of the transfer matrices [3, 22]

Tcl
s0

= trs0 R10(u) . . .RN0(u), (2.14)

Top
s0

= trs0 R10(u) . . .RN0(u)R−1
N0(−u) . . .R−1

10 (−u) (2.15)

for the homogeneous closed and open s�(2) invariant spin chains. The R-operator obeys the
relation R−1

12 (u) = R12(−u) so that we shall use the following expression for Top
s0 :

Top
s0

= trs0 R10(u) . . .RN0(u)RN0(u) . . .R10(u). (2.16)
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2s1 − 2α

2s2

2α

w̄1

w̄2

z1

z2

Figure 1. Graphical representation of the R−
12(α)-operator. The arrow with the index α directed

from w̄ to z denotes the factor (1 − zw̄)−α .

3. Factorization

We find it convenient to represent all operators in question as integral operators. Let us write
the action of the operator A on the function ψ ∈ ∏N

k=1 ⊗Vsk
in the following form:

[Aψ](z) =
∫ N∏

k=1

Dsk
wkA(z|w)ψ(w), (3.1)

where z = (z1, . . . , zN). It follows from definition (3.1) and equation (2.7) that the kernel of
the operator A can be obtained as follows:

A(z|w) = A ·
N∏

k=1

(1 − zkw̄k)
−2sk . (3.2)

Here, the operator A on the rhs of equation (3.2) acts on z-variables.
It is easy to show that the kernel of the operator R−

12(α) takes the following form:

R−
12(α)(z1, z2|w̄1, w̄2) = (1 − z1w̄1)

−2s1+2α(1 − z2w̄1)
−2α(1 − z2w̄2)

−2s2 . (3.3)

It is convenient to represent the kernel R−
12(α)(z|w) in the graphical form. Namely, let us

denote the reproducing kernel Kα(z,w) = (1 − zw̄)−2α by the arrow with the index 2α

directed from w to z. Then the kernel R−
12(α)(z|w) is given by the diagram shown in figure 1.

Similarly, as follows from equation (2.10), the kernel of the R12-operator has the form

Ru(z1, z2|w̄1, w̄2) = (1 − z2w̄1)
−2γ

∫
D(s1+s2+iu)/2ζ

× (1 − z1ζ̄ )−2s1(1 − z2ζ̄ )−2α(1 − ζ w̄1)
−2β(1 − ζ w̄2)

−2s2 , (3.4)

where α and β are defined in equation (2.11) and γ = (s1 + s2 − iu)/2.

There exists another equivalent representation for the R-operator which follows from the
second equality in equation (2.10). Again, it is useful to represent both of them in the graphical
form, see figure 2. The identity depicted in figure 2 (permutation relation) can be considered
an integral identity between the reproducing kernels. It will be quite useful in the subsequent
analysis.

Let us summarize the properties of the R±-operators. One easily checks that

R±
12(α)R±

12(β) = R±
12(α + β), (3.5)

R+
12(s2 − s1 + α)R−

12(α) = R−
12(α)R+

12(s2 − s1 + α), (3.6)

R±
12(α)R±

23(α + β)R±
12(β) = R±

23(β)R±
12(α + β)R±

23(α). (3.7)
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c

c

aa b b

z1 z1

z2z2 w̄1w̄1

w̄2 w̄2

2s1

2s1 2s2

2s2

=

Figure 2. The two equivalent graphical representations of the kernel of the R-operator. The black
dot denotes the integration vertex with the measure corresponding to the spin (s1 + s2 + iu)/2 and
the indices a = 2α = s2 − s1 + iu, b = 2β = s1 − s2 + iu, c = 2γ = s1 + s2 − iu.

The first equality follows from equation (3.3) and from the property of the reproducing kernel.
The second one is the consequence of equation (2.10). The last one arises as the self-
consistency relation of the defining equations for the R± operators [17] and can be checked
directly by making use of the permutation relation.

Let us introduce operators L±
12(α) = P12R±

12(α). It is straightforward to check that these
operators satisfy the relation

L±
12(α)L±

13(α + β)L±
23(β) = L±

23(β)L±
13(α + β)L±

12(α). (3.8)

Equation (3.8) has the form of the Yang–Baxter relation, but in difference to the R-operator,
the operators L±

12(α) map the space Vs1 ⊗ Vs2 �→ Vs2±α ⊗ Vs1∓α . However, for the special
values of the spectral parameter, α± = ±(s2 − s1), the operators L±

12(α±) coincide with the
R-operator for the special values of the spectral parameter

L±
12(±(s2 − s1)) = R12(∓i(s2 − s1)), (3.9)

and play an important role in the subsequent construction.
In what follows, we show that the transfer matrix for the closed homogeneous spin chain

(2.16) can be represented in the factorized form

Tcl
s0
(u) = Q(u + is0)Q̃(u − is0) = Q̃(u − is0)Q(u + is0), (3.10)

where s�(2) invariant Q-operators are given by the traces of L±
12 operators. Namely, we get

Q(u) = trs0 L−
10(s − s0) . . .L−

N0(s − s0)
∣∣
s0=(s−iu)/2, (3.11)

Q̃(u) = P trs0 L+
10(s0 − s) . . .L+

N0(s0 − s)
∣∣
s0=(s+iu)/2, (3.12)

where P is the cyclic permutation operator, Pψ(z1, z2, . . . , zN) = ψ(z2, z3, . . . , z1). Taking
into account (3.9) we conclude that the operators Q(u) and Q̃(u) coincide with the transfer
matrices

Q(u) = T(s−iu)/2

(
u − is

2

)
, (3.13)

Q̃(u) = PT(s+iu)/2

(
u + is

2

)
. (3.14)

The commutativity of the Q, Q̃ operators, [Q(u),Q(v)] = [Q̃(u), Q̃(v)] = [Q(u), Q̃(v)] =
0, follows immediately from the commutativity of the transfer matrices (we recall that
P−1 = Ts

s(0).)
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...............................

...............................

w̄2 w̄3 w̄1w̄N

z1 z2 z3 z1zN

αuαuαu

βuβuβu

Figure 3. The graphical representation of the kernel of Q(u) operator for the closed spin chain;
αu = s − iu and βu = s + iu.

w̄1 w̄2 w̄3 w̄N

z1 z2 z3 zN

γu γuγu

2s

2s

2s

2s

Figure 4. The kernel of the Q̃(u) operator for the closed spin chain. All horizontal lines carry the
index γu = iu− s, while the vertical ones have the index 2s. The black dots denote the integration
with the measure corresponding to the spin s′ = (s + iu)/2.

w̄1
w̄1 w̄N

w̄N

z1
z1 zN

zN

=

αu

αu

βu

βu

γu

γu 2s

2s

Figure 5. The graphical representation of the transfer matrix for the closed spin chain. The indices
αu = s − i(u + is0), βu = s + i(u + is0). The indices of the vertical lines are equal to 2s, and those
of the horizontal are equal to γu = i(u − is0) − s. The black dots denote the integration vertices
corresponding to the spin s′ = (s + i(u − is0))/2.

Making use of equations (3.13) and (3.14) one can represent equation (3.10) in the
following form:

Ts0(u) = T(s+s0−iu)/2

(
u − i(s − s0)

2

)
P T(s+s0+iu)/2

(
u + i(s − s0)

2

)
. (3.15)

To prove the factorization property, we shall show that the integral kernels of the operators
on the lhs and rhs of equation (3.10) coincide. To this end, let us represent the kernel of the
operators under consideration in the graphical form. The diagrammatical representations of
the kernels for the operators Q(u) and Q̃(u) are shown in figures 3 and 4, respectively. In its
turn, the integral kernel for the transfer matrix is shown, in two equivalent forms, in figure 5.
Drawing the diagram for the product Q(u + is0)Q̃(u − is0) (or Q̃(u − is0)Q(u + is0)) one
notes that the measure of integration in the intermediate triple vertices corresponds to the spin
s. Since the vertical lines attached to this vertex correspond to the reproducing kernel with
the spin s, one can carry out the integration using property (2.7) and find that the resulting
diagram coincides with the diagram for the kernel of the transfer matrix. Thus, the property
of the factorization for the homogenous spin chain is established.
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βu
βu

βu

αu

αu

αu

αuαu

βuβu

Figure 6. Diagrammatical representation of the Q(u)-operator for the open spin chain; αu = s− iu
and βu = s + iu.

For completeness, we write down the analytic expressions for the kernels of the Q-
operators

Q(u)(z|w) =
N∏

k=1

(1 − zkw̄k)
−s−iu(1 − zkw̄k+1)

−s+iu, (3.16)

Q̃(u)(z|w) =
N∏

k=1

∫
Ds ′ζk(1 − ζkζ̄k+1)

s−iu(1 − zkζ̄k)
−2s(1 − ζkw̄k)

−2s , (3.17)

where s ′ = s + iu/2, and wN+1 ≡ w1 and so on. Expression (3.16) coincides with the
expression for the Baxter operator obtained in [9].

Let us consider now the homogeneous s�(2) invariant open spin chain. The transfer
matrix for the open spin chain, (2.16), can also be represented in the factorized form, namely

Top
s0

(u) = g(u)Q(u + is0)Q̃(u − is0) = g(u)Q̃(u − is0)Q(u + is0), (3.18)

where

g(u) = s + s0 + iu − 1

2iu − 1
. (3.19)

The operators Q(u) and Q̃(u) have the following form:

Q(u) = trs0 L−
10(s − s0) . . .L−

N0(s − s0)L−
N0(s − s0) . . .L−

10(s − s0)|s0= s−iu
2

, (3.20)

Q̃(u) = trs0 L+
10(s0 − s) . . .L+

N0(s0 − s)L+
N0(s0 − s) . . .L+

10(s0 − s)|s0= s+iu
2

. (3.21)

Again, taking into account equation (3.9) one relates Q-operators to the transfer matrices for
the open spin chain:

Q(u) = T(s−iu)/2

(
u − is

2

)
, (3.22)

Q̃(u) = T(s+iu)/2

(
u + is

2

)
. (3.23)

Thus, similarly to the closed spin chain, one concludes that Q-operators commute with each
other for arbitrary values of the spectral parameters.

To prove the factorization (3.18), we again use the graphical representation for kernels.
For the Q(u) and Q̃(u) operators, they are shown in figures 6 and 7, respectively. The
diagrammatical representation for the kernel of the transfer matrix for the open spin chain is
shown in figure 8. In order to derive this representation one starts with definition (2.16) and
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z1 z2

zN

w̄1 w̄2

w̄N

γu

γu

γu

Figure 7. Diagrammatical representation of the Q̃(u)-operator for the open spin chain. Here, all
horizontal lines carry the index γu = iu− s and all vertical lines have the index 2s. The black dots
denote the integration with the measure corresponding to the conformal spin s′ = (s + iu)/2.

w̄1 w̄2 w̄N

z1 z2

g(u)×

zN

2iuαu αu

αu

αu

αu βu

βu βu

βuβu

γuγu γu

γuγuγu

γu

2s2s2s

Figure 8. The graphical representation of the transfer matrix for the open spin chain. Here
αu = s − i(u + is0), βu = s + i(u + is0), γu = i(u − is0) − s. The black dots denote the integration
vertices corresponding to the spin s′ = (s + i(u − is0))/2 and white dots denote the integration
vertex corresponding to the spin s′′ = iu. The prefactor g(u) is given by equation (3.19).

uses the graphical representation for the kernel of the R-operator shown on the lhs of figure 2.
Next, one should carry out the integration over all intermediate ‘quantum’ vertices ζ1, . . . , ζN .
The integration measure in each vertex is given by expression (2.5), where s is the ‘spin’ of
the quantum space. The result of the integration is the disappearance of the lines with the
index 2s: ∫

D′
sξ

∫
Dζsψ(ξ, ξ̄ )Ks(ξ, ζ )φ(ζ ) =

∫
D′

sξψ(ξ, ξ̄ )φ(ξ) (3.24)

attached to these vertices. Finally, one can carry out the integration over ‘auxiliary space’
vertices. Again, the lines attached to these vertices disappear. The line with the index 2iu
(in the right part of the diagram) arises due to merging of two lines with indices γu and βu,
(1 − zw̄)−γu(1 − zw̄)−βu = (1 − zw̄)−2iu.

To explain the appearance of the factor g(u) and the integration vertex with spin s ′′ = iu,
we note that after the integration one line with index αu becomes attached to the vertex with
the spin s ′ = s + i(u − is0)) by both ends. Noting that∫

Ds ′ξ(1 − ξ ξ̄ )−αu . . . = g(u)

∫
Diuξ . . . ,

one obtains finally the diagrammatic representation for the kernel of the transfer matrix shown
in figure 8.
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w̄1 w̄2 w̄N

z1 z2
zN

2iu

αu

αu

αu

αu αu

βu
βuβu

βu βu γuγu γu

γuγuγu

γu

2s2s2s

2s2s2s

Figure 9. The diagram for the kernel of the transfer matrix for the open spin chain. All notations
are the same as in figure 8. The grey dots denote the integration vertices corresponding to the
spin s.

Now we have to show that the diagram for the transfer matrix can be transformed to the
diagram for the product of the operators Q(u + is0)Q̃(u − is0). The first transformation is the
insertion of the reproducing kernels into the diagram in figure 8 as shown in figure 9. This
operation does not change the kernel, since after the integration over the new vertices one
reproduces the initial expression. The next transformation is the following. Let us consider
the subdiagram formed by the four lines (which have indices 2iu, αu, γu, 2s) attached to the
right (black) vertex in the middle line of the transformed diagram, and the line with the index
βu which connects the lines with indices αu and γu. It can be checked that the indices satisfy
the conditions αu + 2iu = 2s ′ = γu + 2s and βu = 2s ′ − αu − γu. It allows one to use the
permutation relation shown in figure 2. After the transformation, the line with the index βu

changes its position and will connect the endpoints of the other pair of lines. In addition, the
indices of the lines in the new diagrams have to be changed, namely one should interchange
αu and 2s ( αu ↔ 2s ) and γu and 2iu (γu ↔ 2iu).

Next, one notes that the subdiagram formed by the lines attached to the next vertex
has exactly the same form as the one considered just now. Therefore, one can repeat this
transformation successively. As a result, all lines with the index βu in the upper part of
the diagram change their positions, and one has also to interchange the indices in the way
described above, namely, αu ↔ 2s. Further, since the interchange 2iu ↔ γu occurs twice for
all the lines except for the first and the last one in this chain, the whole effect will be that the
line attached to the leftmost vertex (white blob) in the figure will get the index 2iu, while all
other ‘horizontal’ lines will have the same index, γu.

It is important that after this series of transformations only three lines will be attached to
the leftmost vertex (white blob in figure 9). The integration measure in this vertex corresponds
to the conformal spin s ′′ = iu. Since the incoming arrow has the index 2iu, and two other
arrows come out of the vertex, one can integrate over this vertex. After the integration, the line
with the index 2iu disappears (see equation (3.24)) and one can easily check that the resulting
diagram has the form of the integral kernel for the operator Q(u + is0)Q̃(u − is0).

4. Baxter equation

In this section, we study the relation between Q-operators and the transfer matrices over
finite-dimensional auxiliary spaces. For a negative (half)integer value of the spin of auxiliary
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space, s0 = −n, the representation space Vs0=−n contains an invariant subspace Vn. Thus, the
subspace Vs ⊗Vn is an invariant subspace of the Rss0 -operator. It has, therefore, the triangular
form

Rss0(u) =
(

rss0(u) ∗
0 R̃ss0(u)

)
, (4.1)

where rss0(u) is the restriction of the operator Rss0 to the subspace Vs ⊗ Vn. The operator
R̃ss0(u) acts on the space Vs ⊗ Vs0/Vn ∼ Vs ⊗ V1+n/2 and satisfies the YB relation (2.1).
Therefore, it has to be proportional to Rs,s ′

0
(u) with the spin s ′

0 = 1 − s0 = 1 + n:

R̃s,s0=−n(u) = fn(u)Rs,s0=1+n(u). (4.2)

The normalization coefficient,

fn(u) = (−1)2n+1 �(s + 1 + n − iu)

�(s − n − iu)

�(s − n + iu)

�(s + 1 + n + iu)
, (4.3)

can be found by comparing the eigenvalues of R̃ss0(u) and Rs,s ′
0
(u) on the eigenstates,

ψk(z1, z2) = (z1 − z2)
k , or by using the intertwining relation for the R±-operators. The

latter takes the form
1

z2n+1
01

· �(z01∂0 + 2(s0 − α))

�(z01∂0 + 2s0)
= �(z01∂0 + 2(s ′

0 − α′))
�(z01∂0 + 2s ′

0)
∂2n+1

0 , (4.4)

∂2n+1
1

�(z10∂1 + 2s0)

�(z10∂1 + 2(s0 − α))
= �(z10∂1 + 2s ′

0)

�(z10∂1 + 2(s ′
0 − α′))

1

z2n+1
10

, (4.5)

where s0 = −n, s ′
0 = 1 + n, α′ = α + n + 1/2, n being half-integer.

Equations (4.1) and (4.2) imply the following relation for the transfer matrices of the
closed spin chain:

Ts0=−n(u) = tn(u) + (fn(u))NTs0=1+n(u), (4.6)

where tn(u) is the transfer matrix with finite-dimensional auxiliary space, tn(u) =
trVn

r10(u) . . . rN0(u). Using the factorization property (3.10) and introducing the notation

(u)Q̃(u) = �Q(u + i), (4.7)

where

(u) =
(

�(1 − s − iu)

�(1 + s − iu)

)N

, (4.8)

we rewrite equation (4.6) in the form

(u + in)tn(u) = Q(u − in)�Q(u + i(1 + n)) − Q(u + i(1 + n))�Q(u − in). (4.9)

For n = 0, the transfer matrix tn=0(u) = 1 and equation (4.9) reads(
�(1 − s − iu)

�(1 + s − iu)

)N

= Q(u)�Q(u + i) − Q(u + i)�Q(u), (4.10)

which is the Wronskian relation between the operators Q and �Q. Further, one can exclude the
operator �Q (or Q) from equation (4.9). Indeed, multiplying both sides by Q(u − im), where
m is (half)integer such that m +n is integer and −n � m � n−1, after some algebra one finds

t̃n(u)Q(u − im) = t̃(n+m)/2

(
u +

i(n − m)

2

)
Q(u − in)

+ t̃(n−m−1)/2

(
u − i(n + m + 1)

2

)
Q(u + i(n + 1)), (4.11)
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where t̃n(u) = (u + in)tn(u). The same equation holds for the �Q operator as well. The first
relation (n = −m = 1/2) among the ones in (4.11) is nothing else but the Baxter equation

τN(u)Q(u) = (u + is)NQ(u + i) + (u − is)NQ(u − i), (4.12)

where

τN(u) = tr L1(u) . . . LN(u)

and L(u) is the Lax operator

L(u) = u + i

(
S0 S−
S+ −S0

)
.

To derive the Baxter equation (4.12) from (4.11), one puts n = −m = 1/2 and takes into
account that t0(u) = 1 and t1/2(u − i/2) = (u − is)−NτN(u). The latter relation follows from
the relation L(u) = (u − is)rs,−1/2(u − i/2) which can easily be verified by comparison of
the eigenvalues [23]. It is evident that the operator �Q(u) satisfies the same equation (4.12).
Thus, the operators Q(u) and �Q(u) (and, as a consequence, their eigenvalues) represent two
independent solutions of the Baxter equation (4.12). It can be shown [9] that the eigenvalues
of the operator Q(u) are polynomials in u. The eigenvalues of the second operator �Q(u) are
meromorphic functions of u with poles of order N (N is the length of the chain) at the points
uk = −i(1 − s + k), k = 0, 1, 2, . . . ,∞.

Next, using the triple relation (4.11) one can derive the ‘fusion’ relations for the transfer
matrices. Indeed, multiplying both sides of equation (4.11) by the operator Q̃(v) and using
the factorized expression for the transfer matrix (3.10) one obtains the relation which involves
three t and T transfer matrices. After the substitution i(v − u)/2 → s0 and (u + v)/2 → u it
takes the form

tn(u + is0)Ts0− m
2

(
u − im

2

)
= t n+m

2

(
u + is0 +

i(n − m)

2

)
Ts0− n

2

(
u − in

2

)

+ fnm(u + is0)t n−m−1
2

(
u + is0 − i(n + m + 1)

2

)
Ts0+ n+1

2

(
u +

i(n + 1)

2

)
, (4.13)

with

fnm(u) = (u − i(m + 1))

(u + in)
. (4.14)

Similarly, starting from equation (4.11) involving �Q-operator and multiplying by Q(v) one
gets another identity

tn(u − is0)Ts0+ m+1
2

(
u − i(m + 1)

2

)
= t n−m−1

2

(
u − is0 − i(n + m + 1)

2

)
Ts0− n

2

(
u +

in

2

)

+ f−m−1,n(u − is0)t n+m
2

(
u − is0 +

i(n − m)

2

)
Ts0+ n+1

2

(
u − i(n + 1)

2

)
. (4.15)

For n = −m = 1/2, relations (4.13) and (4.15) take the standard form [23] and relate the
transfer matrices with adjacent spins of auxiliary space, Ts0 and Ts0±1/2.

Next, starting from equations (4.9) and (4.11) one can derive two quadratic relations for
the finite-dimensional transfer matrices tn(u). The first one is

t̃ m−n−1
2

(
u +

ik

2

)
t̃ m+n−1

2

(
u − ik

2

)
= t̃ m−k−1

2

(
u +

in

2

)
t̃ m+k−1

2

(
u − in

2

)
+ t̃ k−n−1

2

(
u +

im

2

)
t̃ k+n−1

2

(
u − im

2

)
. (4.16)
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Here, the numbers m, k, n are all integer or half-integer and m > k > n. The second relation
is obtained from the first one by changing n → −n.

The treatment of the open spin chain goes along the same lines. The analogue of
equation (4.9) reads

(2iu − 1)2
n(u)top

n (u) = Q(u − in)�Q(u + i(1 + n)) − Q(u + i(1 + n))�Q(u − in), (4.17)

where

Q̃(u) = 1

s − i + iu

(
�(1 + s − iu)

�(1 − s − iu)

)2N

�Q(u + i) (4.18)

and

top
n (u) = trVn

r10(u) . . . rN0(u)r−1
N0(−u) . . . r−1

10 (−u).

Obviously, the operator Q(u) (�Q(u)) for the open chain satisfies the same equation (4.11)
with t̃n(u) = (2iu − 1)2

n(u)t
op
n (u). The Wronskian relation and the Baxter equation take the

well-known form [22, 13]

(2iu − 1)

(
�(1 − s − iu)

�(1 + s − iu)

)2N

= Q(u)�Q(u + i) − Q(u + i)�Q(u), (4.19)

τ
op
N (u)Q(u) = 2iu + 1

2iu
(u + is)2NQ(u + i) +

2iu − 1

2iu
(u − is)2NQ(u − i). (4.20)

Here, τ
op
N (u) = tr L1(u) . . . LN(u)LN(u) . . . L1(u). Again, the eigenvalues of the operator

Q(u) are polynomials in u [13], while the eigenvalues of �Q are meromorphic functions.
In full analogy with the closed spin chain, one can derive two sets of the ‘fusion’ relations

and check that the finite-dimensional transfer matrices, t̃n(u) = (2iu − 1)2
n(u)t

op
n (u), satisfy

the quadratic relation (4.16).

5. Conclusions

In this paper, we considered the quantum spin chains with s�(2) symmetry. The Hilbert space
of the model is given by the tensor product of the s�(2) modules. For a generic spin s, the
latter are infinite dimensional and equivalent to the space of the polynomials of an arbitrary
degree, Vs = C[z]. Using the factorization of the R-operator

R12(u) = P12R+
12

(
s2 − s1 + iu

2

)
R−

12

(
s1 − s2 + iu

2

)
,

we have shown that the transfer matrices both for the closed and open homogeneous spin chains
(for generic spin of the auxiliary space s0) factorize into a product of two commuting operators
Q and Q̃. The latter are given by the trace of the product of operators L±

k0 = Rk0(∓i(s0 − s))

over the auxiliary space (see equations (3.11) and (3.20)).
For negative half-integer spins, s0 = −n, n = 0, 1/2, 1, . . . , the module Vs has a finite-

dimensional invariant subspace, Vn. The representation induced on the factor space V−n/Vn

is equivalent to the s�(2) module with spin s ′
0 = 1 + n. We have shown that the operators Q

and Q̃ satisfy the finite-difference (Baxter) equation, which follows unambiguously from the
structure of the reducible s�(2) modules and factorization property of the transfer matrices.
The treatment of the closed and open spin chains goes along the same lines with minor
differences. We hope that similar analysis will be applicable to the spin chains with higher
rank symmetry groups.

The factorization property of the transfer matrices breaks down for the finite-dimensional
spin chain; therefore, they require a special consideration. The problem of construction of the
Baxter Q-operator for the finite-dimensional spin chains (in particular, XXX1/2 spin magnet)
was considered in [10, 24].
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